Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37766518

RESUMO

BACKGROUND AND PURPOSE: Psoriasis is a common autoimmune skin disease that significantly diminishes patients' quality of life. Interactions between primary afferents of the somatosensory system and the cutaneous immune system mediate the pathogenesis of psoriasis. This study aims to elucidate the molecular mechanisms of how primary sensory neurons regulate psoriasis formation. EXPERIMENTAL APPROACH: Skin and total RNA were extracted from wild-type (WT) and ASH1-like histone lysine methyltransferase (Ash1l+/- ) mice in both naive and imiquimod (IMQ)-induced psoriasis models. Immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence-activated cell sorting (FACS) were then performed. Microfluidic chamber coculture was used to investigate the interaction between somatosensory neurons and bone marrow dendritic cells (BMDCs) ex vivo. Whole-cell patch clamp recordings were used to evaluate neuronal excitability after Ash1L haploinsufficiency in primary sensory neurons. KEY RESULTS: The haploinsufficiency of ASH1L, a histone methyltransferase, in primary sensory neurons causes both neurite hyperinnervation and increased neuronal excitability, which promote miR-let-7b release from primary afferents in the skin in a neuronal activity-dependent manner. With a 'GUUGUGU' core sequence, miR-let-7b functions as an endogenous ligand of toll-like receptor 7 (TLR7) and stimulates the activation of dermal dendritic cells (DCs) and interleukin (IL)-23/IL-17 axis, ultimately exacerbating the symptoms of psoriasis. Thus, by limiting miR-let-7b release from primary afferents, ASH1L prevents dermal DC activation and ameliorates psoriasis. CONCLUSION AND IMPLICATIONS: Somatosensory neuron ASH1L modulates the cutaneous immune system by limiting neuronal activity-dependent release of miR-let-7b, which can directly activate dermal DCs via TLR7 and ultimately lead to aggravated psoriatic lesion.

2.
Neurosci Bull ; 39(2): 177-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35821338

RESUMO

Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a-/- mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a-/- mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.


Assuntos
Dor Crônica , Canais Iônicos , Neuroma , Animais , Camundongos , Amputação Cirúrgica , Dor Crônica/patologia , Modelos Animais de Doenças , Gânglios Espinais/patologia , Hiperalgesia/etiologia , Canais Iônicos/metabolismo , Macrófagos , Neuroma/complicações , Neuroma/patologia
4.
Neurosci Bull ; 36(11): 1271-1280, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32909219

RESUMO

Chronic visceral pain is one of the primary symptoms of patients with irritable bowel syndrome (IBS), which affects up to 15% of the population world-wide. The detailed mechanisms of visceral pain remain largely unclear. Our previous studies have shown that neonatal maternal deprivation (NMD) followed by adult multiple stress (AMS) advances the occurrence of visceral pain, likely due to enhanced norepinephrine (NE)-ß2 adrenergic signaling. This study was designed to explore the roles of P2X3 receptors (P2X3Rs) in the chronic visceral pain induced by combined stress. Here, we showed that P2X3Rs were co-expressed in ß2 adrenergic receptor (ß2-AR)-positive dorsal root ganglion neurons and that NE significantly enhanced ATP-induced Ca2+ signals. NMD and AMS not only significantly increased the protein expression of P2X3Rs, but also greatly enhanced the ATP-evoked current density, number of action potentials, and intracellular Ca2+ concentration of colon-related DRG neurons. Intrathecal injection of the P2X3R inhibitor A317491 greatly attenuated the visceral pain and the ATP-induced Ca2+ signals in NMD and AMS rats. Furthermore, the ß2-AR antagonist butoxamine significantly reversed the expression of P2X3Rs, the ATP-induced current density, and the number of action potentials of DRG neurons. Overall, our data demonstrate that NMD followed by AMS leads to P2X3R activation, which is most likely mediated by upregulation of ß2 adrenergic signaling in primary sensory neurons, thus contributing to visceral hypersensitivity.


Assuntos
Privação Materna , Receptores Purinérgicos P2X3/metabolismo , Transdução de Sinais , Estresse Fisiológico , Dor Visceral , Animais , Gânglios Espinais , Síndrome do Intestino Irritável , Masculino , Ratos , Ratos Sprague-Dawley
5.
Neurosci Bull ; 35(1): 4-14, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30560437

RESUMO

The pathophysiology of visceral pain in patients with irritable bowel syndrome remains largely unknown. Our previous study showed that neonatal maternal deprivation (NMD) does not induce visceral hypersensitivity at the age of 6 weeks in rats. The aim of this study was to determine whether NMD followed by adult stress at the age of 6 weeks induces visceral pain in rats and to investigate the roles of adrenergic signaling in visceral pain. Here we showed that NMD rats exhibited visceral hypersensitivity 6 h and 24 h after the termination of adult multiple stressors (AMSs). The plasma level of norepinephrine was significantly increased in NMD rats after AMSs. Whole-cell patch-clamp recording showed that the excitability of dorsal root ganglion (DRG) neurons from NMD rats with AMSs was remarkably increased. The expression of ß2 adrenergic receptors at the protein and mRNA levels was markedly higher in NMD rats with AMSs than in rats with NMD alone. Inhibition of ß2 adrenergic receptors with propranolol or butoxamine enhanced the colorectal distention threshold and application of butoxamine also reversed the enhanced hypersensitivity of DRG neurons. Overall, our data demonstrate that AMS induces visceral hypersensitivity in NMD rats, in part due to enhanced NE-ß2 adrenergic signaling in DRGs.


Assuntos
Adrenérgicos/farmacologia , Hiperalgesia/fisiopatologia , Privação Materna , Estresse Fisiológico/fisiologia , Dor Visceral/metabolismo , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hipersensibilidade/tratamento farmacológico , Masculino , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Dor Visceral/induzido quimicamente
6.
Mol Pain ; 14: 1744806918764731, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29560791

RESUMO

Aims Insular cortex is a brain region critical for processing of the sensation. Purinergic receptors are involved in the formation of chronic pain. The aim of the present study was to explore the role and mechanism of P2X3 receptors (P2X3Rs) in insular cortex in chronic visceral pain. Methods Chronic visceral pain in adult rats was induced by neonatal maternal deprivation and measured by detecting the threshold of colorectal distension. Western blotting, immunofluorescence, and real-time quantitative polymerase chain reaction techniques were used to detect the expression and distribution of P2X3Rs. Synaptic transmission in insular cortex was recorded in brain slices by patch clamp techniques. Results Expression of P2X3Rs both at mRNA and protein levels in right hemisphere of insular cortex was significantly increased in neonatal maternal deprivation rats. In addition, P2X3Rs were expressed with NeuN or synaptophysin but not with glial fibrillary acidic protein and CD11b. The co-localization of P2X3Rs with NeuN or synaptophysin was greatly enhanced in right hemisphere of insular cortex in neonatal maternal deprivation rats. Furthermore, neonatal maternal deprivation markedly increased both the frequency and amplitude of miniature excitatory postsynaptic current in right hemisphere of insular cortex. Incubation of A347091 significantly decreased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of insular cortex neurons of neonatal maternal deprivation rats. Incubation of P2X3Rs agonists α,ß-mATP remarkably increased the frequency of spontaneous excitatory postsynaptic current and miniature excitatory postsynaptic current of the right hemisphere of insular cortex neurons of healthy control rats. Importantly, injection of A317491 significantly enhanced the colorectal distension threshold of neonatal maternal deprivation rats, while injection of α,ß-mATP into right but not left insular cortex markedly decreased the colorectal distension threshold in healthy control rats. Conclusions Overall, our data provide integrated pharmacological, biochemical, and functional evidence demonstrating that P2X3Rs are physically and functionally interconnected at the presynaptic level to control synaptic activities in the right insular cortex, thus contributing to visceral pain of neonatal maternal deprivation rats.


Assuntos
Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Privação Materna , Receptores Purinérgicos P2X3/metabolismo , Dor Visceral/metabolismo , Dor Visceral/patologia , Animais , Animais Recém-Nascidos , Antígenos Nucleares/metabolismo , Córtex Cerebral/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenóis/farmacologia , Compostos Policíclicos/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinaptofisina/metabolismo , Regulação para Cima/efeitos dos fármacos , Dor Visceral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...